TY - GEN
T1 - Correlated dynamic adaptive chemistry and multi-timescale modeling of ignition and combustion of n-heptane/air mixture
AU - Sun, Weiqi
AU - El-Asrag, Hossam A.
AU - Ju, Yiguang
PY - 2014
Y1 - 2014
N2 - A new correlated dynamic adaptive chemistry (CO-DAC) method is developed and integrated with the hybrid multi-timescale (HMTS) method for computationally efficient and adaptive numerical simulation. The correlation of mechanisms in both time and space coordinate is proposed by using a few dominant phase parameters in low, intermediate, and high temperature chemistry. The chemical mechanisms are reduced and correlated on the fly by using the multi generation path flux analysis (PFA) method with given thresholds of correlated phase parameters. The advantages of the CO-DAC methods are that it not only provides the flexibility and accuracy for kinetic model and chemistry integration but also avoids redundant model reduction in time and space when the chemistry is correlated in phase space. In order to further increase the computation efficiency, the hybrid multi-timescale method is integrated into the CO-DAC method to solve the ordinary differential equation system of the reduced mechanisms. The simulation of ignition and unsteady flame propagation of an n-heptane and air mixture is carried out to validate and compare the proposed algorithm with the conventional ordinary differential equation solver. The results show that the present CO-DAC/HMTS algorithm is not only computationally efficient but also robust and accurate.
AB - A new correlated dynamic adaptive chemistry (CO-DAC) method is developed and integrated with the hybrid multi-timescale (HMTS) method for computationally efficient and adaptive numerical simulation. The correlation of mechanisms in both time and space coordinate is proposed by using a few dominant phase parameters in low, intermediate, and high temperature chemistry. The chemical mechanisms are reduced and correlated on the fly by using the multi generation path flux analysis (PFA) method with given thresholds of correlated phase parameters. The advantages of the CO-DAC methods are that it not only provides the flexibility and accuracy for kinetic model and chemistry integration but also avoids redundant model reduction in time and space when the chemistry is correlated in phase space. In order to further increase the computation efficiency, the hybrid multi-timescale method is integrated into the CO-DAC method to solve the ordinary differential equation system of the reduced mechanisms. The simulation of ignition and unsteady flame propagation of an n-heptane and air mixture is carried out to validate and compare the proposed algorithm with the conventional ordinary differential equation solver. The results show that the present CO-DAC/HMTS algorithm is not only computationally efficient but also robust and accurate.
UR - http://www.scopus.com/inward/record.url?scp=84902838248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902838248&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84902838248
SN - 9781624102561
T3 - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
BT - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
Y2 - 13 January 2014 through 17 January 2014
ER -