TY - JOUR
T1 - Core-collapse supernova neutrino emission and detection informed by state-of-The-Art three-dimensional numerical models
AU - Nagakura, Hiroki
AU - Burrows, Adam
AU - Vartanyan, David
AU - Radice, David
N1 - Publisher Copyright:
© 2021 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is 6 kpc.
AB - Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is 6 kpc.
KW - neutrinos
KW - supernovae: general
UR - http://www.scopus.com/inward/record.url?scp=85099756500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099756500&partnerID=8YFLogxK
U2 - 10.1093/mnras/staa2691
DO - 10.1093/mnras/staa2691
M3 - Article
AN - SCOPUS:85099756500
SN - 0035-8711
VL - 500
SP - 696
EP - 717
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -