COPT: Coordinated optimal transport on graphs

Yihe Dong, Will Sawin

Research output: Contribution to journalConference articlepeer-review

15 Scopus citations

Abstract

We introduce COPT, a novel distance metric between graphs defined via an optimization routine, computing a coordinated pair of optimal transport maps simultaneously. This gives an unsupervised way to learn general-purpose graph representation, applicable to both graph sketching and graph comparison. COPT involves simultaneously optimizing dual transport plans, one between the vertices of two graphs, and another between graph signal probability distributions. We show theoretically that our method preserves important global structural information on graphs, in particular spectral information, and analyze connections to existing studies. Empirically, COPT outperforms state of the art methods in graph classification on both synthetic and real datasets.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'COPT: Coordinated optimal transport on graphs'. Together they form a unique fingerprint.

Cite this