Convolutional Networks with Oriented 1D Kernels

Alexandre Kirchmeyer, Jia Deng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In computer vision, 2D convolution is arguably the most important operation performed by a ConvNet. Unsurprisingly, it has been the focus of intense software and hardware optimization and enjoys highly efficient implementations. In this work, we ask an intriguing question: can we make a ConvNet work without 2D convolutions? Surprisingly, we find that the answer is yes - we show that a ConvNet consisting entirely of 1D convolutions can do just as well as 2D on ImageNet classification. Specifically, we find that one key ingredient to a high-performing 1D ConvNet is oriented 1D kernels: 1D kernels that are oriented not just horizontally or vertically, but also at other angles. Our experiments show that oriented 1D convolutions can not only replace 2D convolutions but also augment existing architectures with large kernels, leading to improved accuracy with minimal FLOPs increase. A key contribution of this work is a highly-optimized custom CUDA implementation of oriented 1D kernels, specialized to the depthwise convolution setting. Our benchmarks demonstrate that our custom CUDA implementation almost perfectly realizes the theoretical advantage of 1D convolution: it is faster than a native horizontal convolution for any arbitrary angle. Code is available at https://github.com/princeton-vl/Oriented1D.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6199-6209
Number of pages11
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: Oct 2 2023Oct 6 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period10/2/2310/6/23

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Convolutional Networks with Oriented 1D Kernels'. Together they form a unique fingerprint.

Cite this