TY - JOUR
T1 - Controlling extrudate volume fraction through poroelastic extrusion of entangled looped fibers
AU - Pan, Zehao
AU - Nunes, Janine K.
AU - Duprat, Camille
AU - Shum, Ho Cheung
AU - Stone, Howard A.
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - When a suspension of spherical or near-spherical particles passes through a constriction the particle volume fraction either remains the same or decreases. In contrast to these particulate suspensions, here we observe that an entangled fiber suspension increases its volume fraction up to 14-fold after passing through a constriction. We attribute this response to the entanglements among the fibers that allows the network to move faster than the liquid. By changing the fiber geometry, we find that the entanglements originate from interlocking shapes or high fiber flexibility. A quantitative poroelastic model is used to explain the increase in velocity and extrudate volume fraction. These results provide a new strategy to use fiber volume fraction, flexibility, and shape to tune soft material properties, e.g., suspension concentration and porosity, during delivery, as occurs in healthcare, three-dimensional printing, and material repair.
AB - When a suspension of spherical or near-spherical particles passes through a constriction the particle volume fraction either remains the same or decreases. In contrast to these particulate suspensions, here we observe that an entangled fiber suspension increases its volume fraction up to 14-fold after passing through a constriction. We attribute this response to the entanglements among the fibers that allows the network to move faster than the liquid. By changing the fiber geometry, we find that the entanglements originate from interlocking shapes or high fiber flexibility. A quantitative poroelastic model is used to explain the increase in velocity and extrudate volume fraction. These results provide a new strategy to use fiber volume fraction, flexibility, and shape to tune soft material properties, e.g., suspension concentration and porosity, during delivery, as occurs in healthcare, three-dimensional printing, and material repair.
UR - http://www.scopus.com/inward/record.url?scp=85149527915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149527915&partnerID=8YFLogxK
U2 - 10.1038/s41467-023-36860-y
DO - 10.1038/s41467-023-36860-y
M3 - Article
C2 - 36870987
AN - SCOPUS:85149527915
SN - 2041-1723
VL - 14
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 1242
ER -