TY - GEN
T1 - Contrastive Learning as Goal-Conditioned Reinforcement Learning
AU - Eysenbach, Benjamin
AU - Zhang, Tianjun
AU - Levine, Sergey
AU - Salakhutdinov, Ruslan
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - In reinforcement learning (RL), it is easier to solve a task if given a good representation. While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable and instead equip RL algorithms with additional representation learning parts (e.g., auxiliary losses, data augmentation). How can we design RL algorithms that directly acquire good representations? In this paper, instead of adding representation learning parts to an existing RL algorithm, we show (contrastive) representation learning methods can be cast as RL algorithms in their own right. To do this, we build upon prior work and apply contrastive representation learning to action-labeled trajectories, in such a way that the (inner product of) learned representations exactly corresponds to a goal-conditioned value function. We use this idea to reinterpret a prior RL method as performing contrastive learning, and then use the idea to propose a much simpler method that achieves similar performance. Across a range of goal-conditioned RL tasks, we demonstrate that contrastive RL methods achieve higher success rates than prior non-contrastive methods, including in the offline RL setting. We also show that contrastive RL outperforms prior methods on image-based tasks, without using data augmentation or auxiliary objectives.
AB - In reinforcement learning (RL), it is easier to solve a task if given a good representation. While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable and instead equip RL algorithms with additional representation learning parts (e.g., auxiliary losses, data augmentation). How can we design RL algorithms that directly acquire good representations? In this paper, instead of adding representation learning parts to an existing RL algorithm, we show (contrastive) representation learning methods can be cast as RL algorithms in their own right. To do this, we build upon prior work and apply contrastive representation learning to action-labeled trajectories, in such a way that the (inner product of) learned representations exactly corresponds to a goal-conditioned value function. We use this idea to reinterpret a prior RL method as performing contrastive learning, and then use the idea to propose a much simpler method that achieves similar performance. Across a range of goal-conditioned RL tasks, we demonstrate that contrastive RL methods achieve higher success rates than prior non-contrastive methods, including in the offline RL setting. We also show that contrastive RL outperforms prior methods on image-based tasks, without using data augmentation or auxiliary objectives.
UR - http://www.scopus.com/inward/record.url?scp=85150736653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85150736653&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85150736653
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -