TY - JOUR
T1 - Continuum Schroedinger Operators for Sharply Terminated Graphene-Like Structures
AU - Fefferman, C. L.
AU - Weinstein, M. I.
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We study the single electron model of a semi-infinite graphene sheet interfaced with the vacuum and terminated along a zigzag edge. The model is a Schroedinger operator acting on L2(R2) : Hedgeλ=-Δ+λ2V♯, with a potential V♯ given by a sum of translates an atomic potential well, V, of depth λ2, centered on a subset of the vertices of a discrete honeycomb structure with a zigzag edge. We give a complete analysis of the low-lying energy spectrum of Hedgeλ in the strong binding regime (λ large). In particular, we prove scaled resolvent convergence of Hedgeλ acting on L2(R2) , to the (appropriately conjugated) resolvent of a limiting discrete tight-binding Hamiltonian acting in l2(N; C2). We also prove the existence of edge states: solutions of the eigenvalue problem for Hedgeλ which are localized transverse to the edge and pseudo-periodic plane-wave like parallel to the edge. These edge states arise from a “flat-band” of eigenstates of the tight-binding model.
AB - We study the single electron model of a semi-infinite graphene sheet interfaced with the vacuum and terminated along a zigzag edge. The model is a Schroedinger operator acting on L2(R2) : Hedgeλ=-Δ+λ2V♯, with a potential V♯ given by a sum of translates an atomic potential well, V, of depth λ2, centered on a subset of the vertices of a discrete honeycomb structure with a zigzag edge. We give a complete analysis of the low-lying energy spectrum of Hedgeλ in the strong binding regime (λ large). In particular, we prove scaled resolvent convergence of Hedgeλ acting on L2(R2) , to the (appropriately conjugated) resolvent of a limiting discrete tight-binding Hamiltonian acting in l2(N; C2). We also prove the existence of edge states: solutions of the eigenvalue problem for Hedgeλ which are localized transverse to the edge and pseudo-periodic plane-wave like parallel to the edge. These edge states arise from a “flat-band” of eigenstates of the tight-binding model.
UR - http://www.scopus.com/inward/record.url?scp=85092939639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092939639&partnerID=8YFLogxK
U2 - 10.1007/s00220-020-03868-0
DO - 10.1007/s00220-020-03868-0
M3 - Article
AN - SCOPUS:85092939639
SN - 0010-3616
VL - 380
SP - 853
EP - 945
JO - Communications In Mathematical Physics
JF - Communications In Mathematical Physics
IS - 2
ER -