TY - JOUR
T1 - Continuous modeling of creased annuli with tunable bistable and looping behaviors
AU - Yu, Tian
AU - Marmo, Francesco
AU - Cesarano, Pasquale
AU - Adriaenssens, Sigrid
N1 - Publisher Copyright:
Copyright © 2023 the Author(s).
PY - 2023/1/24
Y1 - 2023/1/24
N2 - Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities.
AB - Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities.
KW - bistability
KW - creased annuli
KW - discontinuity
KW - foldability
UR - http://www.scopus.com/inward/record.url?scp=85146894011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146894011&partnerID=8YFLogxK
U2 - 10.1073/pnas.2209048120
DO - 10.1073/pnas.2209048120
M3 - Article
C2 - 36669103
AN - SCOPUS:85146894011
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 4
M1 - e2209048120
ER -