Abstract
Industrial synthesis of succinic acid relies on hydrocarbon oxidation or biomass fermentation routes that suffer from energy-costly separation processes. Here we demonstrate an alternate route to succinic anhydrides via β-lactone carbonylation by heterogeneous bimetallic ion-pair catalysis in Co(CO)4 --incorporated Cr-MIL-101 (Co(CO)4Cr-MIL-101, Cr-MIL-101 = Cr3O(BDC)3F, H2BDC = 1,4-benzenedicarboxylic acid). Postsynthetically introduced Co(CO)4 - facilitates CO insertion to β-lactone substrates activated by the Lewis acidic Cr(III) centers of the metal-organic framework (MOF), leading to catalytic carbonylation with activity and selectivity profiles that compare favorably to those reported for homogeneous ion-pair catalysts. Moreover, the heterogeneous nature of the MOF catalyst enables continuous production of succinic anhydride through a packed bed reactor, with room temperature β-propiolactone carbonylation activity of 1300 molAnhydride·molCo -1 over 6 h on stream. Simple evaporation of the fully converted product stream yields the desired anhydride as isolated solids, highlighting the unique processing advantages conferred by this first example of heterogeneous β-lactone carbonylation pathway.
Original language | English (US) |
---|---|
Pages (from-to) | 10669-10672 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 140 |
Issue number | 34 |
DOIs | |
State | Published - Aug 29 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry