Content-aware GaN compression

Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Federico Perazzi, S. Y. Kung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

30 Scopus citations


Generative adversarial networks (GANs), e.g., StyleGAN2, play a vital role in various image generation and synthesis tasks, yet their notoriously high computational cost hinders their efficient deployment on edge devices. Directly applying generic compression approaches yields poor results on GANs, which motivates a number of recent GAN compression works. While prior works mainly accelerate conditional GANs, e.g., pix2pix and CycleGAN, compressing state-of-the-art unconditional GANs has rarely been explored and is more challenging. In this paper, we propose novel approaches for unconditional GAN compression. We first introduce effective channel pruning and knowledge distillation schemes specialized for unconditional GANs. We then propose a novel content-aware method to guide the processes of both pruning and distillation. With content-awareness, we can effectively prune channels that are unimportant to the contents of interest, e.g., human faces, and focus our distillation on these regions, which significantly enhances the distillation quality. On StyleGAN2 and SN-GAN, we achieve a substantial improvement over the state-of-the-art compression method. Notably, we reduce the FLOPs of StyleGAN2 by 11× with visually negligible image quality loss compared to the full-size model. More interestingly, when applied to various image manipulation tasks, our compressed model forms a smoother and better disentangled latent manifold, making it more effective for image editing.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Number of pages11
ISBN (Electronic)9781665445092
StatePublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: Jun 19 2021Jun 25 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919


Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Content-aware GaN compression'. Together they form a unique fingerprint.

Cite this