Constraint Optimisation Approaches for Designing Group-Living Captive Breeding Programmes

Matthew Forshaw, Rachel Gray, Bridgett vonHoldt, Alexander Ochoa, Joshua M. Miller, Kristin E. Brzeski, Adalgisa Caccone, Evelyn L. Jensen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Captive breeding programs play a critical role in combating the ongoing biodiversity crisis by preserving the most endangered species and supporting reintroduction efforts. Maintaining the genetic health of captive populations requires careful management to prevent inbreeding and maximize the effective population size. Decisions about which males and females should be bred together are guided by the principle of minimizing relatedness between pairs. Methods to select breeding pairs are well developed, however, some species’ ecology requires them to live in groups, and evaluating optimal groupings of multiple males and females that would be suitable to breed together is a more complex problem. Current computational tools to support the design of group-living captive breeding programs suffer from challenges of scalability and flexibility. In this paper we demonstrate the applicability of constraint programming (CP) approaches to optimize breeding groups to minimize relatedness. We present the example of the Galápagos giant tortoises as the test case used to develop our approach. Exploration of the needs of this captive breeding program has informed the development of our flexible approach to capture the constraints on viable captive breeding program design. Our findings have directly informed the implementation of new group configurations at the captive breeding centre. We further demonstrate that our approach is broadly applicable in other contexts through a second case study, providing multi-objective optimisation of a breeding program of canids. Through these case studies and an ablation study using synthetic datasets, we show that our constraint optimisation approach provides an expressive and generalizable means to support captive breeding program design, including scaling to large captive populations, which are currently intractable using current computational methods.

Original languageEnglish (US)
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages27989-27997
Number of pages9
Edition27
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - Apr 11 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number27
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period2/25/253/4/25

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Constraint Optimisation Approaches for Designing Group-Living Captive Breeding Programmes'. Together they form a unique fingerprint.

Cite this