TY - JOUR
T1 - Constraining the evolutionary history of Newton's constant with gravitational wave observations
AU - Yunes, Nicolás
AU - Pretorius, Frans
AU - Spergel, David N.
PY - 2010/3/15
Y1 - 2010/3/15
N2 - Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a constraint map over the entire range of redshifts where binary black hole mergers are expected to occur. A gravitational wave observation of an inspiral event with redshifted masses of 104-105 solar masses for three years should be able to measure Ġ/G at the time of merger to better than 10-11 yr-1.
AB - Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a constraint map over the entire range of redshifts where binary black hole mergers are expected to occur. A gravitational wave observation of an inspiral event with redshifted masses of 104-105 solar masses for three years should be able to measure Ġ/G at the time of merger to better than 10-11 yr-1.
UR - http://www.scopus.com/inward/record.url?scp=77951565530&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951565530&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.81.064018
DO - 10.1103/PhysRevD.81.064018
M3 - Article
AN - SCOPUS:77951565530
SN - 1550-7998
VL - 81
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 064018
ER -