Constant Modulus Waveform Design with Block-Level Interference Exploitation for DFRC Systems

Byunghyun Lee, Anindya Bijoy Das, David J. Love, Christopher G. Brinton, James V. Krogmeier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Dual-function radar-communication (DFRC) is a promising technology where radar and communication functions operate on the same spectrum and hardware. In this paper, we propose an algorithm for designing constant modulus waveforms for DFRC systems. Particularly, we jointly optimize the correlation properties and the spatial beam pattern. For communication, we employ constructive interference-based block-level precoding (CI-BLP) to exploit distortion due to multi-user and radar transmission. We propose a majorization-minimization (MM)-based solution to the formulated problem. To accelerate convergence, we propose an improved majorizing function that leverages a novel diagonal matrix structure. We then evaluate the proposed algorithm via comprehensive simulations.

Original languageEnglish (US)
Title of host publicationICC 2024 - IEEE International Conference on Communications
EditorsMatthew Valenti, David Reed, Melissa Torres
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages324-329
Number of pages6
ISBN (Electronic)9781728190549
DOIs
StatePublished - 2024
Externally publishedYes
Event59th Annual IEEE International Conference on Communications, ICC 2024 - Denver, United States
Duration: Jun 9 2024Jun 13 2024

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Conference

Conference59th Annual IEEE International Conference on Communications, ICC 2024
Country/TerritoryUnited States
CityDenver
Period6/9/246/13/24

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Constant Modulus Waveform Design with Block-Level Interference Exploitation for DFRC Systems'. Together they form a unique fingerprint.

Cite this