TY - GEN
T1 - Consistency analysis of decision-making programs
AU - Chaudhuri, Swarat
AU - Farzan, Azadeh
AU - Kincaid, Zachary
PY - 2014
Y1 - 2014
N2 - Applications in many areas of computing make discrete decisions under uncertainty, for reasons such as limited numerical precision in calculations and errors in sensor-derived inputs. As a result, individual decisions made by such programs may be nondeterministic, and lead to contradictory decisions at different points of an execution. This means that an otherwise correct program may execute along paths, that it would not follow under its ideal semantics, violating essential program invariants on the way. A program is said to be consistent if it does not suffer from this problem despite uncertainty in decisions. In this paper, we present a sound, automatic program analysis for verifying that a program is consistent in this sense. Our analysis proves that each decision made along a program execution is consistent with the decisions made earlier in the execution. The proof is done by generating an invariant that abstracts the set of all decisions made along executions that end at a program location l, then verifying, using a fixpoint constraint-solver, that no contradiction can be derived when these decisions are combined with new decisions made at l. We evaluate our analysis on a collection of programs implementing algorithms in computational geometry. Consistency is known to be a critical, frequently-violated, and thoroughly studied correctness property in geometry, but ours is the first attempt at automated verification of consistency of geometric algorithms. Our benchmark suite consists of implementations of convex hull computation, triangulation, and point location algorithms. On almost all examples that are not consistent (with two exceptions), our analysis is able to verify consistency within a few minutes.
AB - Applications in many areas of computing make discrete decisions under uncertainty, for reasons such as limited numerical precision in calculations and errors in sensor-derived inputs. As a result, individual decisions made by such programs may be nondeterministic, and lead to contradictory decisions at different points of an execution. This means that an otherwise correct program may execute along paths, that it would not follow under its ideal semantics, violating essential program invariants on the way. A program is said to be consistent if it does not suffer from this problem despite uncertainty in decisions. In this paper, we present a sound, automatic program analysis for verifying that a program is consistent in this sense. Our analysis proves that each decision made along a program execution is consistent with the decisions made earlier in the execution. The proof is done by generating an invariant that abstracts the set of all decisions made along executions that end at a program location l, then verifying, using a fixpoint constraint-solver, that no contradiction can be derived when these decisions are combined with new decisions made at l. We evaluate our analysis on a collection of programs implementing algorithms in computational geometry. Consistency is known to be a critical, frequently-violated, and thoroughly studied correctness property in geometry, but ours is the first attempt at automated verification of consistency of geometric algorithms. Our benchmark suite consists of implementations of convex hull computation, triangulation, and point location algorithms. On almost all examples that are not consistent (with two exceptions), our analysis is able to verify consistency within a few minutes.
KW - consistency
KW - geometry
KW - program analysis
KW - robustness
KW - uncertainty
UR - http://www.scopus.com/inward/record.url?scp=84893433153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893433153&partnerID=8YFLogxK
U2 - 10.1145/2535838.2535858
DO - 10.1145/2535838.2535858
M3 - Conference contribution
AN - SCOPUS:84893433153
SN - 9781450325448
T3 - Conference Record of the Annual ACM Symposium on Principles of Programming Languages
SP - 555
EP - 567
BT - POPL 2014 - Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
T2 - 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014
Y2 - 22 January 2014 through 24 January 2014
ER -