Confinement and stability of DIII-D negative central shear discharges

L. L. Lao, K. H. Burrell, T. S. Casper, V. S. Chan, M. S. Chu, C. B. Forest, R. J. Groebner, F. L. Hinton, Y. Kawano, E. A. Lazarus, Y. R. Lin-Liu, M. E. Mauel, W. H. Meyer, R. L. Miller, G. A. Navratil, T. H. Osborne, C. L. Rettig, G. Rewoldt, B. W. Rice, B. W. StallardE. J. Strait, T. S. Taylor, W. M. Tang, A. D. Turnbull, R. E. Waltz

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Negative central magnetic shear (NCS) discharges with βN ≤ 4, H ≤ 3 and up to 80% of the current non-inductively driven are reproducibly produced in the DIII-D tokamak. Strong peaking of Ti, plasma rotation and, in some cases, ne are observed inside the NCS region. Transport analysis shows that the core ion thermal diffusivity is substantially reduced and near the neoclassical value after the formation of the internal transport barrier. The negative central shear is necessary but not sufficient for the formation of this transport barrier. The power required for the formation appears to increase with the toroidal magnetic field. The high performance phase of H-mode NCS discharges often ends with an ELM-like collapse initiated from the edge whereas the L-mode discharges which have a more peaked pressure profile tend to end with a more global n = 1 MHD event.

Original languageEnglish (US)
Pages (from-to)1439-1443
Number of pages5
JournalPlasma Physics and Controlled Fusion
Volume38
Issue number8
DOIs
StatePublished - 1996

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Confinement and stability of DIII-D negative central shear discharges'. Together they form a unique fingerprint.

Cite this