Computing with point cloud data

Facundo Mémoli, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations

Abstract

Point clouds are one of the most primitive and fundamental manifold representations. A popular source of point clouds are three-dimensional shape acquisition devices such as laser range scanners. Another important field where point clouds are found is the representation of high-dimensional manifolds by samples. With the increasing popularity and very broad applications of this source of data, it is natural and important to work directly with this representation, without having to go through the intermediate and sometimes impossible and distorting steps of surface reconstruction. Under the assumption that the underlying object is a submanifold of Euclidean space, we first discuss how to approximately compute geodesic distances by using only the point cloud by which the object is represented. We give probabilistic error bounds under a random model for the sampling process. Later in the chapter we present a geometric framework for comparing manifolds given by point clouds. The underlying theory is based on Gromov—Hausdorff distances, leading to isometry invariant and completely geometric comparisons. This theory is embedded in a probabilistic setting, as derived from random sampling of manifolds, and then combined with results on matrices of pairwise geodesic distances to lead to a computational implementation of the framework.

Original languageEnglish (US)
Title of host publicationModeling and Simulation in Science, Engineering and Technology
PublisherSpringer Basel
Pages201-229
Number of pages29
Edition9780817643768
DOIs
StatePublished - 2006
Externally publishedYes

Publication series

NameModeling and Simulation in Science, Engineering and Technology
Number9780817643768
ISSN (Print)2164-3679
ISSN (Electronic)2164-3725

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • General Engineering
  • Fluid Flow and Transfer Processes
  • Computational Mathematics

Keywords

  • geodesic distance
  • Gromov-Hausdorff distance
  • isometry
  • Point clouds
  • random coverings
  • shape comparison

Fingerprint

Dive into the research topics of 'Computing with point cloud data'. Together they form a unique fingerprint.

Cite this