TY - GEN
T1 - Computing a nonnegative matrix factorization - Provably
AU - Arora, Sanjeev
AU - Ge, Rong
AU - Kannan, Ravindran
AU - Moitra, Ankur
PY - 2012
Y1 - 2012
N2 - The Nonnegative Matrix Factorization (NMF) problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where the factorization is computed using a variety of local search heuristics. Vavasis recently proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time. Consider a nonnegative m x n matrix M and a target inner-dimension r. Our results are the following: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant r. Indeed NMF is most interesting in applications precisely when r is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time (nm) o(r), 3-SAT has a sub-exponential time algorithm. Hence, substantial improvements to the above algorithm are unlikely. 3. We give an algorithm that runs in time polynomial in n, m and r under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first polynomial-time algorithm that provably works under a non-trivial condition on the input matrix and we believe that this will be an interesting and important direction for future work.
AB - The Nonnegative Matrix Factorization (NMF) problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where the factorization is computed using a variety of local search heuristics. Vavasis recently proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time. Consider a nonnegative m x n matrix M and a target inner-dimension r. Our results are the following: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant r. Indeed NMF is most interesting in applications precisely when r is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time (nm) o(r), 3-SAT has a sub-exponential time algorithm. Hence, substantial improvements to the above algorithm are unlikely. 3. We give an algorithm that runs in time polynomial in n, m and r under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first polynomial-time algorithm that provably works under a non-trivial condition on the input matrix and we believe that this will be an interesting and important direction for future work.
KW - data analysis
KW - nonnegative matrix factorization
KW - semi-algebric sets
UR - http://www.scopus.com/inward/record.url?scp=84862609231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862609231&partnerID=8YFLogxK
U2 - 10.1145/2213977.2213994
DO - 10.1145/2213977.2213994
M3 - Conference contribution
AN - SCOPUS:84862609231
SN - 9781450312455
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 145
EP - 161
BT - STOC '12 - Proceedings of the 2012 ACM Symposium on Theory of Computing
T2 - 44th Annual ACM Symposium on Theory of Computing, STOC '12
Y2 - 19 May 2012 through 22 May 2012
ER -