Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings

Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun

Research output: Contribution to journalConference articlepeer-review


We study reinforcement learning with function approximation for large-scale Partially Observable Markov Decision Processes (POMDPs) where the state space and observation space are large or even continuous. Particularly, we consider Hilbert space embeddings of POMDP where the feature of latent states and the feature of observations admit a conditional Hilbert space embedding of the observation emission process, and the latent state transition is deterministic. Under the function approximation setup where the optimal latent state-action Q-function is linear in the state feature, and the optimal Q-function has a gap in actions, we provide a computationally and statistically efficient algorithm for finding the exact optimal policy. We show our algorithm's computational and statistical complexities scale polynomially with respect to the horizon and the intrinsic dimension of the feature on the observation space. Furthermore, we show both the deterministic latent transitions and gap assumptions are necessary to avoid statistical complexity exponential in horizon or dimension. Since our guarantee does not have an explicit dependence on the size of the state and observation spaces, our algorithm provably scales to large-scale POMDPs.

Original languageEnglish (US)
Pages (from-to)34615-34641
Number of pages27
JournalProceedings of Machine Learning Research
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability


Dive into the research topics of 'Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings'. Together they form a unique fingerprint.

Cite this