Abstract
Although hot, cold, and high pressure denaturation are well characterized, the possibility of negative pressure unfolding has received much less attention. Proteins under negative pressure, however, are important in applications such as medical ultrasound, and the survival of biopoloymers in the xylem and adjacent parenchyma cells of vascular plants. In addition, negative pressure unfolding is fundamentally important in obtaining a complete understanding of protein stability and naturally complements previous studies of high pressure denaturation. We use extensive replica-exchange molecular dynamics (REMD) simulations and thermodynamic analysis to obtain folding/unfolding equilibrium phase diagrams for the miniprotein trp-cage (α-structure, 20-residue), the GB1 β-hairpin (β-structure, 16-residue), and the AK16 peptide (α-helix, 16-residue). Although the trp-cage is destabilized by negative pressure, the GB1 β-hairpin and AK16 peptide are stabilized by this condition.
Original language | English (US) |
---|---|
Pages (from-to) | 7761-7769 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry B |
Volume | 118 |
Issue number | 28 |
DOIs | |
State | Published - Jul 17 2014 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry