Abstract
Using calculations, we show that a proposed Cu(I)-mediated deconstructive fluorination of N-benzoylated cyclic amines with Selectfluor® is feasible and may proceed through: (a) substrate coordination to a Cu(I) salt, (b) iminium ion formation followed by conversion to a hemiaminal, and (c) fluorination involving C–C cleavage of the hemiaminal. The iminium ion formation is calculated to proceed via a F-atom coupled electron transfer (FCET) mechanism to form, formally, a product arising from oxidative addition coupled with electron transfer (OA + ET). The subsequent β-C–C cleavage/fluorination of the hemiaminal intermediate may proceed via either ring-opening or deformylative fluorination pathways. The latter pathway is initiated by opening of the hemiaminal to give an aldehyde, followed by formyl H-atom abstraction by a TEDA2+ radical dication, decarbonylation, and fluorination of the C3-radical center by another equivalent of Selectfluor®. In general, the mechanism for the proposed Cu(I)- mediated deconstructive C–H fluorination of N-benzoylated cyclic amines (LH) by Selectfluor® was calculated to proceed analogously to our previously reported Ag(I)-mediated reaction. In comparison to the Ag(I)-mediated process, in the Cu(I)-mediated reaction the iminium ion formation and hemiaminal fluorination have lower associated energy barriers, whereas the product release and catalyst re-generation steps have higher barriers.
Original language | English (US) |
---|---|
Pages (from-to) | 418-432 |
Number of pages | 15 |
Journal | Topics in Catalysis |
Volume | 65 |
Issue number | 1-4 |
DOIs | |
State | Published - Feb 2022 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry
Keywords
- Copper catalyst
- DFT calculation
- Deconstructive fluorination
- N-Benzoylated cyclic amines
- Selectfluor
- Two-state reactivity