Abstract
Population growth and urbanization are driving the demand for centralized wastewater treatment, a primary source of N2O and CH4 emissions. We have conducted the first comprehensive assessment of CH4, N2O and NH3 emissions across diurnal, day-to-day and seasonal scales at 96 US water resource recovery facilities (WRRFs) that collectively treat 9% of US centralized wastewater. Facility-level emissions were scaled to the national level using a probabilistic approach. Here we show that the measured emissions were 1.9 times higher for N2O (95% confidence interval (CI): 1.3–2.6) and 2.4 times higher for CH4 (CI: 1.9–2.9) than current US inventories. Considering the cumulative climate impacts of CH4 and N2O, the top 10% of emitters contributed 74% of the carbon footprint, with the top half contributing 98%, highlighting priorities for mitigation. Although detected at only a small fraction of facilities, measurements of NH3 emissions (86 kt yr−1 in the USA) suggest WRRFs are an overlooked source of urban NH3. Finally, the contribution of centralized wastewater treatment to global greenhouse gas emissions will increase 2- to 17-fold by 2100 under future scenarios. Overall, greater consideration of wastewater treatment emissions is needed to reach sustainability targets.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 1114-1124 |
| Number of pages | 11 |
| Journal | Nature Water |
| Volume | 3 |
| Issue number | 10 |
| DOIs | |
| State | Published - Oct 2025 |
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Environmental Science (miscellaneous)
- Water Science and Technology