Compound wire-tap channels

Yingbin Liang, Gerhard Kramer, H. Vincent Poor, Shlomo Shamai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

70 Scopus citations

Abstract

The compound wire-tap channel is studied, which is based on the classical wire-tap channel with the channel from the source to the destination and the channel from the source to the wire-tapper taking a number of states, respectively. This channel can also be viewed as the wire-tap channel with multiple destinations and multiple wire-tappers, i.e., multicast with multiple wire-tappers. The source wishes to transmit information to all destinations and wants to keep the information secret from all wire-tappers. For the discrete memoryless compound wire-tap channel, lower and upper bounds on the secrecy capacity are derived and are shown to match for the degraded channel. The parallel Gaussian compound wire-tap channel is further studied, for which the secrecy capacity and the characterization of an optimal power allocation are obtained. The secrecy degree of freedom (s.d.o.f.) is also derived, which connects the secure communication rate in the high SNR regime to secure networking coding for deterministic networks. Finally, the multi-antenna (i.e., MIMO) compound wire-tap channel is studied. The secrecy capacity is established for the degraded MIMO compound wire-tap channel and an achievable s.d.o.f. is given for the general MIMO compound wire-tap channel.

Original languageEnglish (US)
Title of host publication45th Annual Allerton Conference on Communication, Control, and Computing 2007
PublisherUniversity of Illinois at Urbana-Champaign, Coordinated Science Laboratory and Department of Computer and Electrical Engineering
Pages136-143
Number of pages8
ISBN (Electronic)9781605600864
StatePublished - 2007
Event45th Annual Allerton Conference on Communication, Control, and Computing 2007 - Monticello, United States
Duration: Sep 26 2007Sep 28 2007

Publication series

Name45th Annual Allerton Conference on Communication, Control, and Computing 2007
Volume1

Other

Other45th Annual Allerton Conference on Communication, Control, and Computing 2007
Country/TerritoryUnited States
CityMonticello
Period9/26/079/28/07

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Compound wire-tap channels'. Together they form a unique fingerprint.

Cite this