Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

Itzhak Bars, Shih Hung Chen, Paul J. Steinhardt, Neil Turok

Research output: Contribution to journalArticle

34 Scopus citations

Abstract

We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

Original languageEnglish (US)
Article number083542
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume86
Issue number8
DOIs
StatePublished - Oct 26 2012

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature'. Together they form a unique fingerprint.

  • Cite this