Comparative interface metrics for metal-free monolayer-based dye-sensitized solar cells

Kung Ching Liao, Hafeez Anwar, Ian G. Hill, Grigory K. Vertelov, Jeffrey Schwartz

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


The first quantitative comparison between self-assembled monolayers of homologous carboxylate-and phosphonate-terminated organic dyes that are of use in dye-sensitized solar cells (DSSCs) is reported. (Cyanovinyl)phosphonate- terminated oligothiophenes and (cyanovinyl)carboxylate-terminated oligothiophenes were synthesized on TiO2 thin film electrodes. Structurally analogous organics were compared for the effect of the anchoring groups on photochemical properties in solution as measured by UV/vis spectroscopy and for reactivity with the electrode surface. Monolayers were grown on the TiO2 electrodes either by "tethering by aggregation and growth" (T-BAG) or by solution dipping. Surface roughness and homogeneity, elemental composition, and thickness of the monolayers were evaluated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and ellipsometry. Molecular loadings for each monolayer on TiO 2 were quantified by quartz crystal microgravimetry (QCM), and the stability of bonding between each class of dyes and the TiO2 was evaluated by measuring desorption, also by QCM; the carboxylates underwent significant dissociation in aqueous media but the phosphonates did not. DSSCs were prepared from each congener and from simple oligothiophene phosphonates to determine the effect of the cyanovinyl group on device behavior; all DSSCs were studied under irradiation from a AM 1.5G solar light source; the effect of cyanovinyl group termination was comparable to that of adding a thiophene moiety, and the DSSC using a self-assembled monolayer of (sexithiophene) phosphonate (6TP) had total power conversion efficiency (η) of ca. 5%.

Original languageEnglish (US)
Pages (from-to)6735-6746
Number of pages12
JournalACS Applied Materials and Interfaces
Issue number12
StatePublished - Dec 26 2012

All Science Journal Classification (ASJC) codes

  • General Materials Science


  • carboxylate self-assembled monolayers
  • dye-sensitized solar cells
  • oligothiophenes
  • phosphonate self-assembled monolayers
  • precious metal-free dye


Dive into the research topics of 'Comparative interface metrics for metal-free monolayer-based dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this