Communication theoretic data analytics

Kwang Cheng Chen, Shao Lun Huang, Lizhong Zheng, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data are modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data are used to demonstrate the advantages of this approach. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness of this formalism. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.

Original languageEnglish (US)
Article number7012041
Pages (from-to)663-675
Number of pages13
JournalIEEE Journal on Selected Areas in Communications
Volume33
Issue number4
DOIs
StatePublished - Apr 1 2015

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Keywords

  • big data
  • communication theory
  • data analysis
  • data mining
  • equalization
  • information centric processing
  • information coupling
  • information fusion
  • information theory
  • knowledge discovery
  • social networks

Fingerprint

Dive into the research topics of 'Communication theoretic data analytics'. Together they form a unique fingerprint.

Cite this