Communication algorithms via deep learning

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Research output: Contribution to conferencePaperpeer-review

124 Scopus citations

Abstract

Coding theory is a central discipline underpinning wireline and wireless modems that are the workhorses of the information age. Progress in coding theory is largely driven by individual human ingenuity with sporadic breakthroughs over the past century. In this paper we study whether it is possible to automate the discovery of decoding algorithms via deep learning. We study a family of sequential codes parametrized by recurrent neural network (RNN) architectures. We show that creatively designed and trained RNN architectures can decode well known sequential codes such as the convolutional and turbo codes with close to optimal performance on the additive white Gaussian noise (AWGN) channel, which itself is achieved by breakthrough algorithms of our times (Viterbi and BCJR decoders, representing dynamic programing and forward-backward algorithms). We show strong generalizations, i.e., we train at a specific signal to noise ratio and block length but test at a wide range of these quantities, as well as robustness and adaptivity to deviations from the AWGN setting.

Original languageEnglish (US)
StatePublished - 2018
Externally publishedYes
Event6th International Conference on Learning Representations, ICLR 2018 - Vancouver, Canada
Duration: Apr 30 2018May 3 2018

Conference

Conference6th International Conference on Learning Representations, ICLR 2018
Country/TerritoryCanada
CityVancouver
Period4/30/185/3/18

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Education
  • Computer Science Applications
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Communication algorithms via deep learning'. Together they form a unique fingerprint.

Cite this