ComGA-RelA interaction and persistence in the Bacillus subtilisK-state

Jeanette Hahn, Andrew W. Tanner, Valerie J. Carabetta, Ileana M. Cristea, David Dubnau

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The bistably expressed K-state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K-state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA+ protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA-dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K-state cells, which are thus trapped in a non-growing state until ComGA is degraded. We show that some K-state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet-hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B.subtilis in the soil.

Original languageEnglish (US)
Pages (from-to)454-471
Number of pages18
JournalMolecular Microbiology
Volume97
Issue number3
DOIs
StatePublished - Aug 1 2015

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Microbiology

Fingerprint

Dive into the research topics of 'ComGA-RelA interaction and persistence in the Bacillus subtilisK-state'. Together they form a unique fingerprint.

Cite this