Colloquium: Annual modulation of dark matter

Katherine Freese, Mariangela Lisanti, Christopher Savage

Research output: Contribution to journalArticlepeer-review

266 Scopus citations

Abstract

Direct detection experiments, which are designed to detect the scattering of dark matter off nuclei in detectors, are a critical component in the search for the Universe's missing matter. This Colloquium begins with a review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals. The count rate in these experiments should experience an annual modulation due to the relative motion of the Earth around the Sun. This modulation, not present for most known background sources, is critical for solidifying the origin of a potential signal as dark matter. The focus is on the physics of annual modulation, discussing the practical formulas needed to interpret a modulating signal. The dependence of the modulation spectrum on the particle and astrophysics models for the dark matter is illustrated. For standard assumptions, the count rate has a cosine dependence with time, with a maximum in June and a minimum in December. Well-motivated generalizations of these models, however, can affect both the phase and amplitude of the modulation. Shown is how a measurement of an annually modulating signal could teach us about the presence of substructure in the galactic halo or about the interactions between dark and baryonic matter. Although primarily a theoretical review, the current experimental situation for annual modulation and future experimental directions is briefly discussed.

Original languageEnglish (US)
Pages (from-to)1561-1581
Number of pages21
JournalReviews of Modern Physics
Volume85
Issue number4
DOIs
StatePublished - Nov 1 2013

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Colloquium: Annual modulation of dark matter'. Together they form a unique fingerprint.

Cite this