Collaborative cyclostationary spectrum sensing for cognitive radio systems

Jarmo Lunden, Visa Koivunen, Anu Huttunen, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

299 Scopus citations


This paper proposes an energy efficient collaborative cyclostationary spectrum sensing approach for cognitive radio systems. An existing statistical hypothesis test for the presence of cyclostationarity is extended to multiple cyclic frequencies and its asymptotic distributions are established. Collaborative test statistics are proposed for the fusion of local test statistics of the secondary users, and a censoring technique in which only informative test statistics are transmitted to the fusion center (FC) during the collaborative detection is further proposed for improving energy efficiency in mobile applications. Moreover, a technique for numerical approximation of the asymptotic distribution of the censored FC test statistic is proposed. The proposed tests are nonparametric in the sense that no assumptions on data or noise distributions are required. In addition, the tests allow dichotomizing between the desired signal and interference. Simulation experiments are provided that show the benefits of the proposed cyclostationary approach compared to energy detection, the importance of collaboration among spatially displaced secondary users for overcoming shadowing and fading effects, as well as the reliable performance of the proposed algorithms even in very low signal-to-noise ratio (SNR) regimes and under strict communication rate constraints for collaboration overhead.

Original languageEnglish (US)
Pages (from-to)4182-4195
Number of pages14
JournalIEEE Transactions on Signal Processing
Issue number11
StatePublished - 2009
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Electrical and Electronic Engineering


  • Censoring
  • Cognitive radio
  • Collaborative spectrum sensing
  • Cyclostationary detection
  • Energy efficient detection


Dive into the research topics of 'Collaborative cyclostationary spectrum sensing for cognitive radio systems'. Together they form a unique fingerprint.

Cite this