TY - JOUR
T1 - Cohort profile
T2 - St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing
AU - Landsman, David
AU - Abdelbasit, Ahmed
AU - Wang, Christine
AU - Guerzhoy, Michael
AU - Joshi, Ujash
AU - Mathew, Shaun
AU - Pou-Prom, Chloe
AU - Dai, David
AU - Pequegnat, Victoria
AU - Murray, Joshua
AU - Chokar, Kamalprit
AU - Banning, Michaelia
AU - Mamdani, Muhammad
AU - Mishra, Sharmistha
AU - Batt, Jane
N1 - Publisher Copyright:
© 2021 Landsman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/3
Y1 - 2021/3
N2 - Background Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical cohorts which can be generated using electronic health records (EHR), but granular information extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers and clinicians with detailed, granular data related to TB management and treatment. Methods We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMHTB contains structured data directly from the EHR, and variables generated using natural language processing (NLP) by extracting relevant information from free-text within clinic, radiology, and other notes. NLP performance was assessed using recall, precision and F1 score averaged across variable labels. We present characteristics of the cohort population using binomial proportions and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. Results SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 patients (N = 3237 with at least 1 associated dictation). Performance of TB diagnosis and medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively Conclusion SMH-TB is a unique database that includes a breadth of structured data derived from structured and unstructured EHR data by using NLP rulesets. The data are available for a variety of research applications, such as clinical epidemiology, quality improvement and mathematical modeling studies.
AB - Background Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical cohorts which can be generated using electronic health records (EHR), but granular information extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers and clinicians with detailed, granular data related to TB management and treatment. Methods We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMHTB contains structured data directly from the EHR, and variables generated using natural language processing (NLP) by extracting relevant information from free-text within clinic, radiology, and other notes. NLP performance was assessed using recall, precision and F1 score averaged across variable labels. We present characteristics of the cohort population using binomial proportions and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. Results SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 patients (N = 3237 with at least 1 associated dictation). Performance of TB diagnosis and medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively Conclusion SMH-TB is a unique database that includes a breadth of structured data derived from structured and unstructured EHR data by using NLP rulesets. The data are available for a variety of research applications, such as clinical epidemiology, quality improvement and mathematical modeling studies.
UR - http://www.scopus.com/inward/record.url?scp=85102460055&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102460055&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0247872
DO - 10.1371/journal.pone.0247872
M3 - Article
C2 - 33657184
AN - SCOPUS:85102460055
SN - 1932-6203
VL - 16
JO - PloS one
JF - PloS one
IS - 3 March
M1 - e0247872
ER -