Cohomological Descent for Faltings Ringed Topos

Research output: Contribution to journalArticlepeer-review

Abstract

Faltings ringed topos, the keystone of Faltings’ approach to p-adic Hodge theory for a smooth variety over a local field, relies on the choice of an integral model, and its good properties depend on the (logarithmic) smoothness of this model. Inspired by Deligne’s approach to classical Hodge theory for singular varieties, we establish a cohomological descent result for the structural sheaf of Faltings topos, which makes it possible to extend Faltings’ approach to any integral model, that is, without any smoothness assumption. An essential ingredient of our proof is a variation of Bhatt–Scholze’s arc-descent of perfectoid rings.

Original languageEnglish (US)
Article numbere48
JournalForum of Mathematics, Sigma
Volume12
DOIs
StatePublished - Apr 2 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Analysis
  • Theoretical Computer Science
  • Algebra and Number Theory
  • Statistics and Probability
  • Mathematical Physics
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Cohomological Descent for Faltings Ringed Topos'. Together they form a unique fingerprint.

Cite this