Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis

Margherita Maiuri, Evgeny E. Ostroumov, Rafael G. Saer, Robert E. Blankenship, Gregory D. Scholes

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

Femtosecond pulsed excitation of light-harvesting complexes creates oscillatory features in their response. This phenomenon has inspired a large body of work aimed at uncovering the origin of the coherent beatings and possible implications for function. Here we exploit site-directed mutagenesis to change the excitonic level structure in Fenna-Matthews-Olson (FMO) complexes and compare the coherences using broadband pump-probe spectroscopy. Our experiments detect two oscillation frequencies with dephasing on a picosecond timescale - both at 77 K and at room temperature. By studying these coherences with selective excitation pump-probe experiments, where pump excitation is in resonance only with the lowest excitonic state, we show that the key contributions to these oscillations stem from ground-state vibrational wavepackets. These experiments explicitly show that the coherences - although in the ground electronic state - can be probed at the absorption resonances of other bacteriochlorophyll molecules because of delocalization of the electronic excitation over several chromophores.

Original languageEnglish (US)
Pages (from-to)177-183
Number of pages7
JournalNature chemistry
Volume10
Issue number2
DOIs
StatePublished - Feb 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis'. Together they form a unique fingerprint.

Cite this