Coated gas bubbles for the continuous synthesis of hollow inorganic particles

Jiandi Wan, Howard A. Stone

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

We present a microfluidic approach for the controlled encapsulation of individual gas bubbles in micrometer-diameter aqueous droplets with high gas volume fractions and demonstrate this approach to making a liquid shell, which serves as a template for the synthesis of hollow inorganic particles. In particular, we find that an increase in the viscosity of the aqueous phase facilitates the encapsulation of individual gas bubbles in an aqueous droplet and allows control of the thickness of a thin aqueous shell. Furthermore, because such droplets contain a finite amount of water, uncontrolled hydrolysis reactions between reactive inorganic precursors and bulk water can be avoided. We demonstrate this approach by introducing reactive inorganic precursors, such as silane and titanium butoxide, for sol-gel reactions downstream from the formation of the bubble in a droplet and consequently fabricate hollow particles of silica or titania in one continuous flow process. These approaches provide a route to controlling double-emulsion-type gas-liquid microstructures and offer a new fabrication method for thin-shell-covered microbubbles and hollow microparticles.

Original languageEnglish (US)
Pages (from-to)37-41
Number of pages5
JournalLangmuir
Volume28
Issue number1
DOIs
StatePublished - Jan 10 2012

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Spectroscopy
  • General Materials Science
  • Surfaces and Interfaces
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Coated gas bubbles for the continuous synthesis of hollow inorganic particles'. Together they form a unique fingerprint.

Cite this