CLCL: Non-compositional Expression Detection with Contrastive Learning and Curriculum Learning

Jianing Zhou, Ziheng Zeng, Suma Bhat

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Non-compositional expressions present a substantial challenge for natural language processing (NLP) systems, necessitating more intricate processing compared to general language tasks, even with large pre-trained language models. Their non-compositional nature and limited availability of data resources further compound the difficulties in accurately learning their representations. This paper addresses both of these challenges. By leveraging contrastive learning techniques to build improved representations it tackles the non-compositionality challenge. Additionally, we propose a dynamic curriculum learning framework specifically designed to take advantage of the scarce available data for modeling non-compositionality. Our framework employs an easy-to-hard learning strategy, progressively optimizing the model's performance by effectively utilizing available training data. Moreover, we integrate contrastive learning into the curriculum learning approach to maximize its benefits. Experimental results demonstrate the gradual improvement in the model's performance on idiom usage recognition and metaphor detection tasks. Our evaluation encompasses six datasets, consistently affirming the effectiveness of the proposed framework. Our models available at https://github.com/zhjjn/CLCL.git.

Original languageEnglish (US)
Title of host publicationLong Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages730-743
Number of pages14
ISBN (Electronic)9781959429722
StatePublished - 2023
Externally publishedYes
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'CLCL: Non-compositional Expression Detection with Contrastive Learning and Curriculum Learning'. Together they form a unique fingerprint.

Cite this