TY - JOUR
T1 - Chemistry and Geometry of Counterions Used in Hydrophobic Ion Pairing Control Internal Liquid Crystal Phase Behavior and Thereby Drug Release
AU - Ristroph, Kurt
AU - Salim, Malinda
AU - Clulow, Andrew J.
AU - Boyd, Ben J.
AU - Prud'Homme, Robert K.
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/4/5
Y1 - 2021/4/5
N2 - The combination of Flash NanoPrecipitation and hydrophobic ion pairing (HIP) is a valuable approach for generating nanocarrier formulations of ionic water-soluble drugs with controllable release properties dictated by liquid crystalline structuring of the ion pairs. However, there are few examples of this in practice in the literature. This work aims to decipher the influence of the nature of the hydrophobic counterion used in HIP and its consequent impact on liquid crystalline structuring and drug release. The hypothesis of this study was that hydrophobic counterions with different head and tail groups used for FNP with HIP would give rise to different liquid crystalline structures, which in turn would result in different drug release behavior. A cationic, water-soluble antibiotic, polymixin B, was complexed with eight different hydrophobic counterions with varying head and tail groups and encapsulated into nanocarriers 100-400 nm in size prepared using FNP. Sixteen formulations were assessed for internal structure by synchrotron small-angle X-ray scattering, and drug release was measured in vitro in physiological conditions. The liquid crystalline phases formed depended on the counterion head group and tail geometry, drug:counterion charge ratio, and the ionic strength and pH of the release medium. Drug release occurred more rapidly when no liquid crystalline phases were present and more slowly when higher-ordered phases existed. Specific findings include that phosphonic acid counterions lead to the formation of lamellar structures that persisted at pH 2.0 but were not present at pH 7.3. In contrast, sulfonic acids lead to lamellar or hexagonal phases that persisted at both pH 7.3 and 2.0, while hydrophobic counterions without alkyl tails did not form internal structures. It was also clear that the lipophilicity of the counterion does not dictate drug release. These findings confirm that the liquid crystalline phase behavior of the drug:counterion complex dictates drug release and significantly improves our understanding of the types of controlled release formulations that are possible using FNP with HIP.
AB - The combination of Flash NanoPrecipitation and hydrophobic ion pairing (HIP) is a valuable approach for generating nanocarrier formulations of ionic water-soluble drugs with controllable release properties dictated by liquid crystalline structuring of the ion pairs. However, there are few examples of this in practice in the literature. This work aims to decipher the influence of the nature of the hydrophobic counterion used in HIP and its consequent impact on liquid crystalline structuring and drug release. The hypothesis of this study was that hydrophobic counterions with different head and tail groups used for FNP with HIP would give rise to different liquid crystalline structures, which in turn would result in different drug release behavior. A cationic, water-soluble antibiotic, polymixin B, was complexed with eight different hydrophobic counterions with varying head and tail groups and encapsulated into nanocarriers 100-400 nm in size prepared using FNP. Sixteen formulations were assessed for internal structure by synchrotron small-angle X-ray scattering, and drug release was measured in vitro in physiological conditions. The liquid crystalline phases formed depended on the counterion head group and tail geometry, drug:counterion charge ratio, and the ionic strength and pH of the release medium. Drug release occurred more rapidly when no liquid crystalline phases were present and more slowly when higher-ordered phases existed. Specific findings include that phosphonic acid counterions lead to the formation of lamellar structures that persisted at pH 2.0 but were not present at pH 7.3. In contrast, sulfonic acids lead to lamellar or hexagonal phases that persisted at both pH 7.3 and 2.0, while hydrophobic counterions without alkyl tails did not form internal structures. It was also clear that the lipophilicity of the counterion does not dictate drug release. These findings confirm that the liquid crystalline phase behavior of the drug:counterion complex dictates drug release and significantly improves our understanding of the types of controlled release formulations that are possible using FNP with HIP.
KW - controlled release
KW - drug delivery
KW - flash nanoprecipitation
KW - hydrophobic ion pairing
KW - nanocarrier
KW - small-angle X-ray scattering
UR - http://www.scopus.com/inward/record.url?scp=85103426591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103426591&partnerID=8YFLogxK
U2 - 10.1021/acs.molpharmaceut.0c01132
DO - 10.1021/acs.molpharmaceut.0c01132
M3 - Article
C2 - 33656349
AN - SCOPUS:85103426591
SN - 1543-8384
VL - 18
SP - 1666
EP - 1676
JO - Molecular Pharmaceutics
JF - Molecular Pharmaceutics
IS - 4
ER -