TY - JOUR
T1 - Charge-neutral electronic excitations in quantum insulators
AU - Wu, Sanfeng
AU - Schoop, Leslie M.
AU - Sodemann, Inti
AU - Moessner, Roderich
AU - Cava, Robert J.
AU - Ong, N. P.
N1 - Publisher Copyright:
© Springer Nature Limited 2024.
PY - 2024/11/14
Y1 - 2024/11/14
N2 - Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.
AB - Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.
UR - http://www.scopus.com/inward/record.url?scp=85209229603&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209229603&partnerID=8YFLogxK
U2 - 10.1038/s41586-024-08091-8
DO - 10.1038/s41586-024-08091-8
M3 - Article
C2 - 39537889
AN - SCOPUS:85209229603
SN - 0028-0836
VL - 635
SP - 301
EP - 310
JO - Nature
JF - Nature
IS - 8038
ER -