Charge-insensitive qubit design derived from the Cooper pair box

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf

Research output: Contribution to journalArticlepeer-review

2326 Scopus citations

Abstract

Short dephasing times pose one of the main challenges in realizing a quantum computer. Different approaches have been devised to cure this problem for superconducting qubits, a prime example being the operation of such devices at optimal working points, so-called "sweet spots." This latter approach led to significant improvement of T2 times in Cooper pair box qubits. Here, we introduce a new type of superconducting qubit called the "transmon." Unlike the charge qubit, the transmon is designed to operate in a regime of significantly increased ratio of Josephson energy and charging energy EJ EC. The transmon benefits from the fact that its charge dispersion decreases exponentially with EJ EC, while its loss in anharmonicity is described by a weak power law. As a result, we predict a drastic reduction in sensitivity to charge noise relative to the Cooper pair box and an increase in the qubit-photon coupling, while maintaining sufficient anharmonicity for selective qubit control. Our detailed analysis of the full system shows that this gain is not compromised by increased noise in other known channels.

Original languageEnglish (US)
Article number042319
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume76
Issue number4
DOIs
StatePublished - Oct 12 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Charge-insensitive qubit design derived from the Cooper pair box'. Together they form a unique fingerprint.

Cite this