Abstract
We demonstrate high-speed manipulation of a few-electron double quantum dot. In the one-electron regime, the double dot forms a charge qubit. Microwaves are used to drive transitions between the (1,0) and (0,1) charge states of the double dot. A local quantum point contact charge detector measures the photon-induced change in occupancy of the charge states. Charge detection is used to measure T1 ∼ 16 ns and also provides a lower bound estimate for T2 *of 400 ps for the charge qubit. In the two-electron regime we use pulsed-gate techniques to measure the singlet-triplet relaxation time for nearly-degenerate spin states. These experiments demonstrate that the hyperfine interaction leads to fast spin relaxation at low magnetic fields. Finally, we discuss how two-electron spin states can be used to form a logical spin qubit.
Original language | English (US) |
---|---|
Pages (from-to) | 42-46 |
Number of pages | 5 |
Journal | Physica E: Low-Dimensional Systems and Nanostructures |
Volume | 34 |
Issue number | 1-2 |
DOIs | |
State | Published - Aug 2006 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
Keywords
- Charge qubit
- Coherent manipulation
- Rabi oscillation
- Spin qubit