TY - GEN
T1 - Characterizing neural dependencies with copula models
AU - Berkes, Pietro
AU - Wood, Frank
AU - Pillow, Jonathan
PY - 2009
Y1 - 2009
N2 - The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that can simultaneously account for (1) marginal distributions over single-neuron spike counts that are discrete and non-negative; and (2) joint distributions over the responses of multiple neurons that are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients. We explore a variety of copula models for joint neural response distributions, and derive an efficient maximum likelihood procedure for estimating them. We apply these models to neuronal data collected in macaque pre-motor cortex, and quantify the improvement in coding accuracy afforded by incorporating the dependency structure between pairs of neurons. We find that more than one third of neuron pairs shows dependency concentrated in the lower or upper tails for their firing rate distribution.
AB - The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that can simultaneously account for (1) marginal distributions over single-neuron spike counts that are discrete and non-negative; and (2) joint distributions over the responses of multiple neurons that are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients. We explore a variety of copula models for joint neural response distributions, and derive an efficient maximum likelihood procedure for estimating them. We apply these models to neuronal data collected in macaque pre-motor cortex, and quantify the improvement in coding accuracy afforded by incorporating the dependency structure between pairs of neurons. We find that more than one third of neuron pairs shows dependency concentrated in the lower or upper tails for their firing rate distribution.
UR - http://www.scopus.com/inward/record.url?scp=84858790082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858790082&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858790082
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 129
EP - 136
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Y2 - 8 December 2008 through 11 December 2008
ER -