TY - JOUR
T1 - Characterization of the neuroinvasive profile of a pseudorabies virus recombinant expressing the mTurquoise2 reporter in single and multiple injection experiments
AU - Hogue, Ian B.
AU - Card, J. Patrick
AU - Rinaman, Linda
AU - Staniszewska Goraczniak, Halina
AU - Enquist, Lynn W.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Background: Viral transneuronal tracing has become a well established technology used to define the synaptic architecture of polysynaptic neural networks. New Method: In this report we define the neuroinvasive profile and reporter expression of a new recombinant of the Bartha strain of pseudorabies virus (PRV). The new recombinant, PRV-290, expresses the mTurquoise2 fluorophor and is designed to complement other isogenic recombinants of Bartha that express different reporters of infection. Results & Comparison with Existing Methods: PRV-290 was injected either alone or in combination with isogenic recombinants of PRV that express enhanced green fluorescent protein (EGFP; PRV-152) or monomeric red fluorescent protein (mRFP; PRV-614). Circuits previously defined using PRV-152 and PRV-614 were used for the analysis. The data demonstrate that PRV-290 is a retrograde transneuronal tracer with temporal kinetics similar to those of its isogenic recombinants. Stable expression of the diffusible mTurquoise2 reporter filled infected neurons, with the extent and intensity of labeling increasing with advancing post inoculation survival. In multiple injection experiments, PRV-290 established productive infections in neurons also replicating PRV-152 and/or PRV-614. This novel demonstration of three recombinants infecting individual neurons represents an important advance in the technology. Conclusion: Collectively, these data demonstrate that PRV-290 is a valuable addition to the viral tracer toolbox for transneuronal tracing of neural circuitry.
AB - Background: Viral transneuronal tracing has become a well established technology used to define the synaptic architecture of polysynaptic neural networks. New Method: In this report we define the neuroinvasive profile and reporter expression of a new recombinant of the Bartha strain of pseudorabies virus (PRV). The new recombinant, PRV-290, expresses the mTurquoise2 fluorophor and is designed to complement other isogenic recombinants of Bartha that express different reporters of infection. Results & Comparison with Existing Methods: PRV-290 was injected either alone or in combination with isogenic recombinants of PRV that express enhanced green fluorescent protein (EGFP; PRV-152) or monomeric red fluorescent protein (mRFP; PRV-614). Circuits previously defined using PRV-152 and PRV-614 were used for the analysis. The data demonstrate that PRV-290 is a retrograde transneuronal tracer with temporal kinetics similar to those of its isogenic recombinants. Stable expression of the diffusible mTurquoise2 reporter filled infected neurons, with the extent and intensity of labeling increasing with advancing post inoculation survival. In multiple injection experiments, PRV-290 established productive infections in neurons also replicating PRV-152 and/or PRV-614. This novel demonstration of three recombinants infecting individual neurons represents an important advance in the technology. Conclusion: Collectively, these data demonstrate that PRV-290 is a valuable addition to the viral tracer toolbox for transneuronal tracing of neural circuitry.
KW - Pseudorabies virus
KW - Transneuronal tracing
KW - mTurquoise2 reporter
UR - http://www.scopus.com/inward/record.url?scp=85051455456&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051455456&partnerID=8YFLogxK
U2 - 10.1016/j.jneumeth.2018.08.004
DO - 10.1016/j.jneumeth.2018.08.004
M3 - Article
C2 - 30098326
AN - SCOPUS:85051455456
SN - 0165-0270
VL - 308
SP - 228
EP - 239
JO - Journal of Neuroscience Methods
JF - Journal of Neuroscience Methods
ER -