Characterization of oxygen, carbon, and sulfur adlayers on W(211)

Jay Burton Benziger, Richard E. Preston

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Adlayers of oxygen, carbon, and sulfur on W(211) have been characterized by LEED, AES, TPD, and CO adsorption. Oxygen initially adsorbs on the W(211) surface forming p(2 × 1)O and p(1 × 1)O structures. Atomic oxygen is the only desorption product from these surfaces. This initial adsorption selectively inhibits CO dissociation in the CO(β1) state. Increased oxidation leads to a p(1 × 1)O structure which totally inhibits CO dissociation. Volatile metal oxides desorb from the p(1 × 1)O surface at 1850 K. Oxidation of W(211) at 1200 K leads to reconstruction of the surface and formation of p(1 × n)O LEED patterns, 3 ≤ n ≤ 7. The reconstructed surface also inhibits CO dissociation and volatile metal oxides are observed to desorb at 1700 K, as well as at 1850 K. Carburization of the W(211) surface below 1000 K produced no ordered structures. Above 1000 K carburization produces a c(6 × 4)C which is suggested to result from a hexagonal tungsten carbide overlayer. CO dissociation is inhibited on the W(211)-c(6×4)C surface. Sulfur initially orders into a c(2 × 2)S structure on W(211). Increased coverage leads to a c(2×6)S structure and then a complex structure. Adsorbed sulfur reduces CO dissociation on W(211), but even at the highest sulfur coverages CO dissociation was observed. Sulfur was found to desorb as atomic S at 1850 K for sulfur coverages less than 7 6 monolayers. At higher sulfur coverages the dimer, S2, was observed to desorb at 1700 K in addition to atomic sulfur desorption.

Original languageEnglish (US)
Pages (from-to)183-201
Number of pages19
JournalSurface Science
Issue number1
StatePublished - Mar 1 1985

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Characterization of oxygen, carbon, and sulfur adlayers on W(211)'. Together they form a unique fingerprint.

Cite this