ChamNet: Towards efficient network design through platform-aware model adaptation

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, Niraj K. Jha

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

This paper proposes an efficient neural network (NN) architecture design methodology called Chameleon that honors given resource constraints. Instead of developing new building blocks or using computationally-intensive reinforcement learning algorithms, our approach leverages existing efficient network building blocks and focuses on exploiting hardware traits and adapting computation resources to fit target latency and/or energy constraints. We formulate platform-aware NN architecture search in an optimization framework and propose a novel algorithm to search for optimal architectures aided by efficient accuracy and resource (latency and/or energy) predictors. At the core of our algorithm lies an accuracy predictor built atop Gaussian Process with Bayesian optimization for iterative sampling. With a one-time building cost for the predictors, our algorithm produces state-of-the-art model architectures on different platforms under given constraints in just minutes. Our results show that adapting computation resources to building blocks is critical to model performance. Without the addition of any special features, our models achieve significant accuracy improvements relative to state-of-the-art handcrafted and automatically designed architectures. We achieve 73.8% and 75.3% top-1 accuracy on ImageNet at 20ms latency on a mobile CPU and DSP. At reduced latency, our models achieve up to 8.2% (4.8%) and 6.7% (9.3%) absolute top-1 accuracy improvements compared to MobileNetV2 and MnasNet, respectively, on a mobile CPU (DSP), and 2.7% (4.6%) and 5.6% (2.6%) accuracy gains over ResNet-101 and ResNet-152, respectively, on an Nvidia GPU (Intel CPU).

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages11390-11399
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
CountryUnited States
CityLong Beach
Period6/16/196/20/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Categorization
  • Deep Learning
  • Recognition: Detection
  • Retrieval

Fingerprint Dive into the research topics of 'ChamNet: Towards efficient network design through platform-aware model adaptation'. Together they form a unique fingerprint.

  • Cite this

    Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., Vajda, P., Uyttendaele, M., & Jha, N. K. (2019). ChamNet: Towards efficient network design through platform-aware model adaptation. In Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 (pp. 11390-11399). [8953371] (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; Vol. 2019-June). IEEE Computer Society. https://doi.org/10.1109/CVPR.2019.01166