Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy

Robert E. Kopp, Benjamin P. Weiss, Adam C. Maloof, Hojotollah Vali, Cody Z. Nash, Joseph L. Kirschvink

Research output: Contribution to journalArticlepeer-review

87 Scopus citations


Magnetotactic bacteria produce intracellular crystals of magnetite or greigite, the properties of which have been shaped by evolution to maximize the magnetic moment per atom of iron. Intracellular bacterial magnetite therefore possesses traits amenable to detection by physical techniques: typically, narrow size and shape distributions, single-domain size and arrangement in linear chains, and often crystal elongation. Past strategies for searching for bacterial magnetofossils using physical techniques have focused on identifying samples containing significant amounts of single domain magnetite or with narrow coercivity distributions. Searching for additional of traits would, however, increase the likelihood that candidate magnetofossils are truly of biological origin. Ferromagnetic resonance spectroscopy (FMR) is in theory capable of detecting the distinctive magnetic anisotropy produced by chain arrangement and crystal elongation. Here we present analyses of intact and lysed magnetotactic bacteria, dilutions of synthetic magnetite, and sedimentary samples of modern carbonates from the Great Bahama Bank, Oligocene-Miocene deep-sea muds from the South Atlantic, and Pleistocene lacustrine deposits from Mono Basin, California. We demonstrate that FMR can distinguish between intact bacterial magnetite chains, collapsed chains, and linear strings of magnetite formed by physical processes. We also show that sediments in which the magnetization is likely carried by bacterial magnetite have FMR spectra resembling those of intact or altered bacterial magnetite chains.

Original languageEnglish (US)
Pages (from-to)10-25
Number of pages16
JournalEarth and Planetary Science Letters
Issue number1-2
StatePublished - Jul 15 2006

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


  • biogenic magnetite
  • ferromagnetic resonance
  • magnetofossils
  • magnetotactic bacteria


Dive into the research topics of 'Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy'. Together they form a unique fingerprint.

Cite this