Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum

P. Cho, C. K. Law

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Ignition of fuel/oxygen/nitrogen mixtures over platinum wire is experimentally studied by using microcalorimetry and by restricting the flow to the low Reynolds number range so that axisymmetry prevails. The fuels studied are propane, butane, propylene, ethylene, carbon monoxide, and hydrogen. Parameters investigated include flow velocity, fuel type and concentration, and oxygen concentration. The catalytic ignition temperatures of the various fuels are accurately determined over extensive ranges of fuel/oxygen/nitrogen concentrations. Results show two distinctly opposite ignition trends depending on the nature of the fuel. That is, the ignition temperature of lean propane/air and butane/air mixtures decreases as their fuel concentration is increased, while the reverse trend is observed for lean mixtures of propylene, ethylene, carbon monoxide, and hydrogen with air. Furthermore, the ignition of propane depends primarily on fuel concentration, while the ignition of carbon monoxide depends on fuel and oxygen concentrations to a comparable extent. These results are explained on the basis of hierarchical surface adsorption strengths of the different reactants in effecting catalytic ignition. Additional phenomena of interest are observed and discussed.

Original languageEnglish (US)
Pages (from-to)159-170
Number of pages12
JournalCombustion and Flame
Volume66
Issue number2
DOIs
StatePublished - Nov 1986
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum'. Together they form a unique fingerprint.

Cite this