Carbonate Coprecipitation for Cd and Zn Treatment and Evaluation of Heavy Metal Stability Under Acidic Conditions

Julie J. Kim, Sang Soo Lee, Paul Fenter, Satish C.B. Myneni, Viktor Nikitin, Catherine A. Peters

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Mining wastes or combustion ash are materials of high carbon sequestration potential but are also known for their toxicity in terms of heavy metal content. To utilize such waste materials for engineered carbon mineralization purposes, there is a need to investigate the fate and mobility of toxic metals. This is a study of the coprecipitation of metals with calcium carbonate for environmental heavy metal mitigation. The study also examines the stability of precipitated phases under environmentally relevant acid conditions. For a wide range of cadmium (Cd) and zinc (Zn) concentrations (10 to 5000 mg/L), induced coprecipitation led to greater than 99% uptake from water. The calcium carbonate phases were found to contain amounts as high as 9.9 wt % (Cd) and 17 wt % (Zn), as determined by novel synchrotron techniques, including X-ray fluorescence element mapping and three-dimensional (3D) nanotransmission X-ray microscopy (TXM). TXM imaging revealed first-of-a-kind observations of chemical gradients and internal nanoporosity within particles. These observations provided new insights into the mechanisms leading to the retention of coprecipitated heavy metals during the dissolution of calcite in acidic (pH 4) solutions. These observations highlight the feasibility of utilizing carbonate coprecipitation as an engineered approach to the durable sequestration of toxic metals.

Original languageEnglish (US)
Pages (from-to)3104-3113
Number of pages10
JournalEnvironmental Science and Technology
Volume57
Issue number8
DOIs
StatePublished - Feb 28 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry

Keywords

  • CO sequestration
  • X-ray computed tomography
  • acid leaching
  • cadmium
  • calcium carbonate
  • carbon mineralization
  • water treatment
  • zinc

Fingerprint

Dive into the research topics of 'Carbonate Coprecipitation for Cd and Zn Treatment and Evaluation of Heavy Metal Stability Under Acidic Conditions'. Together they form a unique fingerprint.

Cite this