Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data

Grace C. Mckenzie-Smith, Scott W. Wolf, Julien F. Ayroles, Joshua W. Shaevitz

Research output: Contribution to journalArticlepeer-review

Abstract

Animal behavior spans many timescales, from short, seconds-scale actions to daily rhythms over many hours to life-long changes during aging. To access longer timescales of behavior, we continuously recorded individual Drosophila melanogaster at 100 frames per second for up to 7 days at a time in featureless arenas on sucrose-agarose media. We use the deep learning framework SLEAP to produce a full-body postural dataset for 47 individuals resulting in nearly 2 billion pose instances. We identify stereotyped behaviors such as grooming, proboscis extension, and locomotion and use the resulting ethograms to explore how the flies’ behavior varies across time of day and days in the experiment. We find distinct daily patterns in all stereotyped behaviors, adding specific information about trends in different grooming modalities, proboscis extension duration, and locomotion speed to what is known about the D. melanogaster circadian cycle. Using our holistic measurements of behavior, we find that the hour after dawn is a unique time point in the flies’ daily pattern of behavior, and that the behavioral composition of this hour tracks well with other indicators of health such as locomotion speed and the fraction of time spend moving vs. resting. The method, data, and analysis presented here give us a new and clearer picture of D. melanogaster behavior across timescales, revealing novel features that hint at unexplored underlying biological mechanisms.

Original languageEnglish (US)
Article numbere1012753
JournalPLoS computational biology
Volume21
Issue number2
DOIs
StatePublished - Feb 2025

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data'. Together they form a unique fingerprint.

Cite this