TY - JOUR
T1 - cappuccino and spire
T2 - two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo.
AU - Manseau, L. J.
AU - Schüpbach, T.
PY - 1989
Y1 - 1989
N2 - cappuccino and spire are unique Drosophila maternal-effect loci that participate in pattern formation in both the anteroposterior and dorsoventral axes of the early embryo. Mutant females produce embryos lacking pole cells, polar granules, and normal abdominal segmentation. They share these defects with the posterior group of maternal-effect genes. Although embryos are defective in abdominal segmentation, in double mutant combinations with Bicaudal D, abdominal segments can be formed in the anterior half of the egg. This indicates that embryos produced by mutant females contain the 'posterior determinant' required for abdominal segmentation (Nüsslein-Volhard et al. 1987) and suggests that the wild-type gene products are not required for production of the posterior determinant but, rather, for its localization or stabilization. The vasa protein, a component of polar granules, is not localized at the posterior pole of mutant egg chambers or embryos, providing additional support for the hypothesis that localization to or stabilization of substances at the posterior pole of the egg chamber is defective in mutant females. Females mutant for the strongest alleles also produce dorsalized embryos. Phenotypic analysis reveals that these dorsalized embryos also have abdominal segmentation defects. The mutant phenotypes can be ordered in a series of increasing severity. Pole cell formation is most sensitive to loss of functional gene products, followed by abdominal segmentation, whereas normal dorsoventral patterning is the least sensitive to loss of functional gene products. In addition, mutant females contain egg chambers that appear to be dorsalized, resulting in the production of eggs with dorsalized eggshells. Germ-line mosaics indicate that cappuccino and spire are required in the oocyte-nurse cell complex. This suggests that the eggshell phenotype results from altered pattern in the underlying germ cell. Also, we defined the epistatic relationships between several early patterning loci, on the basis of an analysis of the eggs and embryos produced by females doubly mutant for cappuccino or spire and other loci that affect the pattern of both the egg and the embryo. On the basis of our current knowledge of the genes involved in this process, we formulated a working model for the early steps in dorsoventral patterning.
AB - cappuccino and spire are unique Drosophila maternal-effect loci that participate in pattern formation in both the anteroposterior and dorsoventral axes of the early embryo. Mutant females produce embryos lacking pole cells, polar granules, and normal abdominal segmentation. They share these defects with the posterior group of maternal-effect genes. Although embryos are defective in abdominal segmentation, in double mutant combinations with Bicaudal D, abdominal segments can be formed in the anterior half of the egg. This indicates that embryos produced by mutant females contain the 'posterior determinant' required for abdominal segmentation (Nüsslein-Volhard et al. 1987) and suggests that the wild-type gene products are not required for production of the posterior determinant but, rather, for its localization or stabilization. The vasa protein, a component of polar granules, is not localized at the posterior pole of mutant egg chambers or embryos, providing additional support for the hypothesis that localization to or stabilization of substances at the posterior pole of the egg chamber is defective in mutant females. Females mutant for the strongest alleles also produce dorsalized embryos. Phenotypic analysis reveals that these dorsalized embryos also have abdominal segmentation defects. The mutant phenotypes can be ordered in a series of increasing severity. Pole cell formation is most sensitive to loss of functional gene products, followed by abdominal segmentation, whereas normal dorsoventral patterning is the least sensitive to loss of functional gene products. In addition, mutant females contain egg chambers that appear to be dorsalized, resulting in the production of eggs with dorsalized eggshells. Germ-line mosaics indicate that cappuccino and spire are required in the oocyte-nurse cell complex. This suggests that the eggshell phenotype results from altered pattern in the underlying germ cell. Also, we defined the epistatic relationships between several early patterning loci, on the basis of an analysis of the eggs and embryos produced by females doubly mutant for cappuccino or spire and other loci that affect the pattern of both the egg and the embryo. On the basis of our current knowledge of the genes involved in this process, we formulated a working model for the early steps in dorsoventral patterning.
UR - http://www.scopus.com/inward/record.url?scp=0024723365&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024723365&partnerID=8YFLogxK
U2 - 10.1101/gad.3.9.1437
DO - 10.1101/gad.3.9.1437
M3 - Article
C2 - 2514120
AN - SCOPUS:0024723365
SN - 0890-9369
VL - 3
SP - 1437
EP - 1452
JO - Genes & development
JF - Genes & development
IS - 9
ER -