TY - GEN
T1 - Capacity and power allocation for transmitter and receiver cooperation in fading channels
AU - Ng, Chris T.K.
AU - Goldsmith, Andrea J.
PY - 2006
Y1 - 2006
N2 - Capacity gain from transmitter and receiver cooperation under channel fading are compared in a relay network where the cooperating nodes are close together. We assume a Rayleigh flat-fading environment in the high signal-to-noise ratio (SNR) regime where the transmitters only have channel distribution information (CDI) but not channel state information (CSI). When all nodes have equal average transmit power, we show that the decode-and-forward transmitter cooperation strategy is capacity-achieving and is superior to receiver cooperation. However, the compress-and-forward receiver cooperation strategy is shown to outperform transmitter cooperation when power is optimally allocated among the nodes. Furthermore, we show that cooperative systems provide resilience to channel fading. However, in a fading channel, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together. With respect to limits on cooperation, it is shown that in a large cluster of M cooperating nodes, transmitter cooperation without CSI at the transmitter (CSIT), or receiver cooperation under equal power allocation, provides no capacity gain in a static channel, and at most a constant capacity gain that fails to grow with M in a fading channel.
AB - Capacity gain from transmitter and receiver cooperation under channel fading are compared in a relay network where the cooperating nodes are close together. We assume a Rayleigh flat-fading environment in the high signal-to-noise ratio (SNR) regime where the transmitters only have channel distribution information (CDI) but not channel state information (CSI). When all nodes have equal average transmit power, we show that the decode-and-forward transmitter cooperation strategy is capacity-achieving and is superior to receiver cooperation. However, the compress-and-forward receiver cooperation strategy is shown to outperform transmitter cooperation when power is optimally allocated among the nodes. Furthermore, we show that cooperative systems provide resilience to channel fading. However, in a fading channel, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together. With respect to limits on cooperation, it is shown that in a large cluster of M cooperating nodes, transmitter cooperation without CSI at the transmitter (CSIT), or receiver cooperation under equal power allocation, provides no capacity gain in a static channel, and at most a constant capacity gain that fails to grow with M in a fading channel.
UR - http://www.scopus.com/inward/record.url?scp=42549113111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42549113111&partnerID=8YFLogxK
U2 - 10.1109/ICC.2006.255654
DO - 10.1109/ICC.2006.255654
M3 - Conference contribution
AN - SCOPUS:42549113111
SN - 1424403553
SN - 9781424403554
T3 - IEEE International Conference on Communications
SP - 3741
EP - 3746
BT - 2006 IEEE International Conference on Communications, ICC 2006
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2006 IEEE International Conference on Communications, ICC 2006
Y2 - 11 July 2006 through 15 July 2006
ER -