Abstract
We consider a distributed reinforcement learning setting where multiple agents separately explore the environment and communicate their experiences through a central server. However, αfraction of agents are adversarial and can report arbitrary fake information. Critically, these adversarial agents can collude and their fake data can be of any sizes. We desire to robustly identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents. Our main technical contribution is COW, a novel algorithm for the robust mean estimation from batches problem, that can handle arbitrary batch sizes. Building upon this new estimator, in the offline setting, we design a Byzantine-robust distributed pessimistic value iteration algorithm; in the online setting, we design a Byzantine-robust distributed optimistic value iteration algorithm. Both algorithms obtain near-optimal sample complexities and achieve superior robustness guarantee than prior works.
Original language | English (US) |
---|---|
Pages (from-to) | 3230-3269 |
Number of pages | 40 |
Journal | Proceedings of Machine Learning Research |
Volume | 206 |
State | Published - 2023 |
Event | 26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain Duration: Apr 25 2023 → Apr 27 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability