TY - JOUR
T1 - Bubble casting soft robotics
AU - Jones, Trevor J.
AU - Jambon-Puillet, Etienne
AU - Marthelot, Joel
AU - Brun, P. T.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/11/11
Y1 - 2021/11/11
N2 - Inspired by living organisms, soft robots are developed from intrinsically compliant materials, enabling continuous motions that mimic animal and vegetal movement1. In soft robots, the canonical hinges and bolts are replaced by elastomers assembled into actuators programmed to change shape following the application of stimuli, for example pneumatic inflation2–5. The morphing information is typically directly embedded within the shape of these actuators, whose assembly is facilitated by recent advances in rapid prototyping techniques6–11. Yet, these manufacturing processes have limitations in scalability, design flexibility and robustness. Here we demonstrate a new all-in-one methodology for the fabrication and the programming of soft machines. Instead of relying on the assembly of individual parts, our approach harnesses interfacial flows in elastomers that progressively cure to robustly produce monolithic pneumatic actuators whose shape can easily be tailored to suit applications ranging from artificial muscles to grippers. We rationalize the fluid mechanics at play in the assembly of our actuators and model their subsequent morphing. We leverage this quantitative knowledge to program these soft machines and produce complex functionalities, for example sequential motion obtained from a monotonic stimulus. We expect that the flexibility, robustness and predictive nature of our methodology will accelerate the proliferation of soft robotics by enabling the assembly of complex actuators, for example long, tortuous or vascular structures, thereby paving the way towards new functionalities stemming from geometric and material nonlinearities.
AB - Inspired by living organisms, soft robots are developed from intrinsically compliant materials, enabling continuous motions that mimic animal and vegetal movement1. In soft robots, the canonical hinges and bolts are replaced by elastomers assembled into actuators programmed to change shape following the application of stimuli, for example pneumatic inflation2–5. The morphing information is typically directly embedded within the shape of these actuators, whose assembly is facilitated by recent advances in rapid prototyping techniques6–11. Yet, these manufacturing processes have limitations in scalability, design flexibility and robustness. Here we demonstrate a new all-in-one methodology for the fabrication and the programming of soft machines. Instead of relying on the assembly of individual parts, our approach harnesses interfacial flows in elastomers that progressively cure to robustly produce monolithic pneumatic actuators whose shape can easily be tailored to suit applications ranging from artificial muscles to grippers. We rationalize the fluid mechanics at play in the assembly of our actuators and model their subsequent morphing. We leverage this quantitative knowledge to program these soft machines and produce complex functionalities, for example sequential motion obtained from a monotonic stimulus. We expect that the flexibility, robustness and predictive nature of our methodology will accelerate the proliferation of soft robotics by enabling the assembly of complex actuators, for example long, tortuous or vascular structures, thereby paving the way towards new functionalities stemming from geometric and material nonlinearities.
UR - http://www.scopus.com/inward/record.url?scp=85118898935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118898935&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-04029-6
DO - 10.1038/s41586-021-04029-6
M3 - Article
C2 - 34759362
AN - SCOPUS:85118898935
SN - 0028-0836
VL - 599
SP - 229
EP - 233
JO - Nature
JF - Nature
IS - 7884
ER -